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1 Introduction

The prediction of the stock market, with its inherent volatility and potential for substan-
tial financial gains, has long been a focus of sophisticated market participants such as
institutional investors, hedge funds, and proprietary trading firms. These entities leverage
advanced methods to make accurate predictions about future price movements and trends,
aiming to gain a competitive edge and maximize their investment returns. Among the vari-
ous approaches employed, Hidden Markov Models (HMMs) have emerged as a powerful tool
for analyzing and predicting time series data, including stock prices.

Hidden Markov Models are statistical models that represent systems with hidden states
through observable events. In essence, an HMM consists of a set of hidden states, transition
probabilities between these states, and emission probabilities that link each state to specific
observations. This framework has proven effective in a wide range of applications where
temporal dynamics are crucial. In recent years, many strategies have been developed for
algorithmic trading. Among these, Hidden Markov Models (HMMs) have emerged as pow-
erful tools for the prediction of time series data, including stock market predictions. Hidden
Markov Models are statistical models that represent systems with hidden states through
observable events. In essence, an HMM is defined by a set of states, transition probabili-
ties between these states, and emission probabilities that relate each state to a particular
observation. This framework has proven to be highly effective in analyzing and predicting
time-dependent events.

Several studies have explored the application of HMMs in stock market prediction. For
example, HMMs have been used to model the daily opening, closing, high, and low prices
of stocks, utilizing fractional changes in these quantities as features
[Catello et al.(2023)Catello, Ruggiero, Schiavone, and Valentino]. These models have shown
promising results in predicting future stock prices, offering a probabilistic framework that
captures the inherent uncertainty and dynamics of the market.

In this research report, we propose an approach to stock price prediction using Hidden
Markov Models. Our method involves training a unique HMM for each stock using histor-
ical data from Yahoo Finance. We incorporate features such as daily fractional differences
in stock values and the fractional deviation of intraday maximum and minimum values to
generate accurate predictions. The goal is to develop an intelligent forecasting model that
can assist investors in making informed investment decisions, ultimately enhancing their
ability to navigate the complexities of the stock market.

This paper is organized as follows: in Section 2, we provide an overview of basic con-
cepts in HMM, including some definitions and mathematical equations; Section 3 introduces
our methodology; in Section 4, we describe our technical implementation, focusing on the
prediction methodology. Section 5 presents the results. Section 6 discusses the limitations
of the HMM approach. Finally, Section 7 concludes the paper by summarizing key findings
and suggesting directions for future research.

2 Review of Basic Concepts

There are 5 components we need to define to run our HMM:

• Hidden states - The hidden states are are are not directly observable. The set of
hidden states in an HMM is represented as:

S = {S1, S2, . . . , St}

• Set of observations - The observations are related to the states but do not directly
indicate the state. The set of possible observations generated by the states is:

O = {O1, O2, . . . , Ot}

• Transition matrix - The transition matrix, A, contains the probabilities of moving
from one state to another:

A = [aij ] where aij = P (St+1 = j | St = i)

aij represents the probability of transitioning from state i to state j.
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• Emissions Matrix - Also known as observation matrix, B, it contains the probabil-
ities of observing each possible output from each state:

B = [bj(k)] where bj(k) = P (Ot = k | St = j)

where bj(k) is the probability of observing the symbol k from state j.

• Initial Probability Distribution - The initial state probabilities, π, define the
likelihood of the system starting in each state:

π = [πi] where πi = P (S1 = i)

where πi is the probability that the Markov chain will start in state i.

2.1 Assumptions of HMM

Markov Assumption: The probability of moving to the next state depends only on the
present state and not on how the present state was reached (memoryless property). Consider
a sequence of state variables S1, S2, ..., St

P (St|S1...St−1) = P (St|St−1)

Output Independence: The probability of an output observation depends only on the
state that produced the observation and it is independent of any other states or previous
observations. Consider Ot is the observation at time t

P (Ot|S1, O1..., St−1, Ot−1, St) = P (Ot|St)

2.2 Likelihood Computation: The Forward Algorithm

The likelihood problem is to determine the probability of observing a specific sequence of
observations given the model parameters(transition matrix A, emission matrix B and initial
state probabilities π). This is typically solved using the Forward Algorithm, which efficiently
computes the probabilities of observing a sequence given the model parameters.

Define the forward probability αt(i) as the probability of observing the sequence up to
time t and being in the state j at time t, given the model parameters:

αt(j) = P (o1, o2, . . . , ot, st = j | λ)

Initialization

The initialization of the forward probabilities at time 1 is given by:

α1(j) = πjbj(o1)

where:

• πj is the initial state probability of state j

• bj(o1) is the probability of observing o1 from state j.

Recursion

By the law of total probability, the recursive computation for subsequent times is given by:

αt+1(j) =

(
N∑
i=1

αt(i)aij

)
bj(ot+1)

where:

• N is the number of states in the model such that 1 ≤ j ≤ N .

• aij is the probability of transitioning from state i to state j.

• bj(ot+1) is the probability of observing ot+1 from state j.
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Termination

The probability of observing the entire sequence O = {o1, o2, . . . , oT } given the model λ is
then computed by summing the forward probabilities at the final time step:

P (O | λ) =
N∑
i=1

αT (i)

2.3 Decoding: The Viterbi Algorithm

The decoding problem in the context of Hidden Markov Models involves finding the most
likely sequence of hidden states given an observed sequence of outputs. The Viterbi Al-
gorithm is a dynamic programming algorithm specifically designed to solve the decoding
problem efficiently. It identifies the most likely sequence of states that best explains a se-
quence of observations in an HMM. The algorithm works by building a path, state by state,
which has the highest probability of leading to the observed sequence.

Initialization:

Begin by setting up the initial probabilities. Define V [1, i] as the probability of i after
observing the first observation and starting from the initial distribution. This is computed
as:

V [1, i] = πibi(o1)

bt1(j) = 0

where πi is the initial probability of state i, and bi(o1) is the emission probability of observing
the first symbol in state i.

Recursion:

For each subsequent observation and each possible state, compute the probability of each
path reaching state i at time t using the probabilities computed for time t−1. The probability
V [t, i] of the most likely path ending in state i at time t is given by:

V [t, i] =
N

max
j

(V [t− 1, j]× aji)× bi(ot)

Here, aji is the transition probability from state j to state i, and bi(ot) is the emission
probability of observing symbol ot in state i.

Termination:

The probability of the most likely path that explains the entire observation sequence is
obtained by taking the maximum over the last set of computed probabilities:

P ∗ = max
i

V [T, i]

where T is the total number of observations.

2.3.1 Path Backtracking:

To determine the most likely sequence of states, backtrack from the last observation. This
involves tracing the path back from the state that has the highest probability at the final
time step to the initial state, based on where each state probability came from at each step
of the recursion.

2.4 Training: The Forward-Backward Algorithm

The Forward-Backward Algorithm is a fundamental method used in training Hidden Markov
Models. The algorithm will let us train both the transition probabilities A and the emission
probabilities B of the HMM. Here’s an overview of the process:

1. The Forward Step

The Forward algorithm calculates the probability of the partial observation sequence up to
a certain time step, given each state. This is done iteratively using the following steps:
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Initialization:
α1(i) = πi · bi(O1)

where α1(i) is the forward probability at time 1 for state i, πi is the initial probability of
state i, and bi(O1) is the probability of observing O1 in state i.

Induction:

αt(j) =

N∑
i=1

αt−1(i) · aij · bj(Ot)

where aij is the transition probability from state i to state j, and bj(Ot) is the probability
of observing Ot in state j.

Termination:

P (O|λ) =
N∑
i=1

αT (i)

where P (O|λ) is the probability of the observation sequence O given the model λ, and T is
the length of the observation sequence.

2. The Backward Step

The Backward algorithm calculates the probability of the partial observation sequence from
a certain time step to the end, given each state. This is also done iteratively using the
following steps:

Initialization:
βT (i) = 1

where βT (i) is the backward probability at time T for state i.

Induction:

βt(i) =

N∑
j=1

aij · bj(Ot+1) · βt+1(j)

Termination:

P (O|λ) =
N∑
i=1

πi · bi(O1) · β1(i)

2.4.1 Combining Forward and Backward Probabilities

The Forward-Backward algorithm combines the forward and backward probabilities to com-
pute the posterior probability of each state at each time step. This is given by:

γt(i) =
αt(i) · βt(i)

P (O|λ)

where γt(i) is the probability of i at time t given the observation sequence O.

Section 2 provides an overview of basic concepts in HMM, including some definitions
and examples, Markov property, transition and emission matrices, fundamental problems in
HMM including likelihood function, decoding, and learning, and some algorithms in HMM
such as Viterbi, backward and forward algorithms. In section 3 introduces an application of
HMM. In Section 4, we perform numerical study. Section 5 provides conclusions and closing
remarks.

3 Methodology

In this study, we follow the prediction approach proposed by Nguyet Nguyen in the paper ti-
tled ”Hidden Markov Model for Stock Trading” [Nguyen(2018)]. This methodology involves
several key steps, beginning with the selection and preprocessing of historical stock price
data, followed by the identification of the optimal number of hidden states for the HMMs.
We then trained the models and evaluated their performance using various statistical cri-
teria to ensure accuracy and robustness. The final model selection was based on a balance
between model fit and complexity, guided by information criteria such as AIC, BIC, HQC,
and CAIC.
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3.1 Dataset

The dataset used in this research consists of historical stock price data for four companies:
Apple Inc. (AAPL), NVIDIA Corp. (NVDA), Alphabet Inc. (GOOGL), and Microsoft
Corp. (MSFT). The data spans the maximum available period for each stock and was re-
trieved using Yahoo Finance API [Finance(2024)].

For each stock, the data includes the following attributes:

• Open: The price at which the stock opened on a given trading day.

• High: The highest price the stock reached on a given trading day.

• Low: The lowest price the stock reached on a given trading day.

• Close: The price at which the stock closed on a given trading day.

The historical data was resampled to a monthly frequency to reduce noise and focus on
longer-term trends. Any rows with missing or infinite values were removed to ensure the
integrity of the dataset.

3.2 Data Prepossessing

The data prepossessing involved several key steps to ensure the integrity and suitability of
the dataset for modeling with Hidden Markov Models (HMM). Initially, the OHLC (Open,
High, Low, Close) prices were extracted from the raw stock data. Then, log returns were
calculated for each price series to stabilize the variance and make the series more stationary,
which is a crucial assumption for many time series models. The log returns are computed
as the difference in the natural logarithm of consecutive prices, mathematically represented
as

Log Return = log(
P1

Pt−1
)

where Pt and Pt−1 are the prices at time t and t− 1 respectively. This transformation helps
in managing large fluctuations and normalizing the data.

Following the calculation of log returns, data cleaning was performed to remove any rows
with infinite or NaN values, this step is critical as the presence of such values can significantly
affect the performance and convergence of the HMM. After cleaning the data, the returns
were standardized using the StandardScaler from the sklearn library. Standardization
involves scaling the data to have a mean of zero and a standard deviation of one, which
ensures that each feature contributes equally to the analysis and prevents features with
larger scales from dominating the model.

3.3 Finding the Optimal Hidden State

This process involved exploring different configurations of hidden states to identify the
optimal Hidden Markov Model (HMM) for each stock. The optimal number of hidden
states must be chosen carefully since it directly affects the model’s capacity to capture the
underlying patterns and dynamics in stock market data.

We varied the number of hidden states from 2 to 10 and for each value, a Gaussian HMM
was trained using the hmmlearn library. These models were trained with full covariance
matrices, allowing for the modeling of the complete relationship between variables, and
were iterated up to 1000 times to ensure convergence.

To evaluate and compare the performance of each model, several information criteria
were calculated. These included the Akaike Information Criterion (AIC), Bayesian Informa-
tion Criterion (BIC), Hannan-Quinn Criterion (HQC), and Consistent Akaike Information
Criterion (CAIC). These criteria are defined as follows:

• Akaike Information Criterion (AIC):

AIC = −2 log(L) + 2k (1)

• Bayesian Information Criterion (BIC):

BIC = −2 log(L) + k log(n) (2)

where

• Hannan-Quinn Criterion (HQC):

HQC = −2 log(L) + 2k log(log(n)) (3)
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• Consistent Akaike Information Criterion (CAIC):

CAIC = −2 log(L) + k(log(n) + 1) (4)

where log(L) is the log-likelihood of the model, k is the number of parameters, and n is the
number of samples.

For each stock, the models were evaluated using four statistical metrics—AIC, BIC,
HQC, and CAIC—which balance model fit with complexity. The optimal number of hidden
states was determined by selecting the model with the lowest scores across these criteria, en-
suring accuracy without overfitting, thereby effectively capturing market dynamics without
unnecessary complexity. The penalties for each metric differ: AIC imposes a linear penalty
proportional to the number of parameters (2k), BIC scales this penalty with the logarithm
of the sample size (k ln(n)), HQC applies a slower-growing penalty using the logarithm of
the sample size (2k ln(ln(n))), and CAIC further strengthens the penalty by adding an extra
term to the BIC formula (k(ln(n) + 1)). These penalties ensure that the chosen models are
well-balanced, avoiding excessive complexity while maintaining a good fit.

3.4 Results

The values of the performance metric are plotted in Figure 1, 2, 3 and 4, where a lower
criterion value indicates a better model fit. The summary of optimal states for each stock
is as follows:

• Amazon Inc. (AMZN): 6 hidden states

• NVIDIA Corporation (NVDA): 6 hidden states

• Apple Inc. (AAPL): 5 hidden states

The discrepancies in the optimal number of states across different criteria highlight the
need for careful model selection based on the analysis objective. AIC often favors more
complex models, potentially leading to overfitting, while BIC, HQC, and CAIC typically
suggest simpler models to avoid this. Since our objective is to generalize the model to new
data for prediction, we place more emphasis on the results of BIC, HQC, and CAIC when
selecting the number of hidden states.

For AMZN and NVDA, BIC and HQC both recommend 6 hidden states, making it the
preferred choice, as these criteria are conservative and generally reliable. For AAPL, BIC
and CAIC both suggest 5 hidden states, so 5 is selected as the final model.
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Figure 1: AIC scores

Figure 2: BIC scores
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Figure 3: CAIC scores

Figure 4: HQC scores
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4 Implementation

4.1 Prediction Methodology

In this analysis, we employed a Hidden Markov Model (HMM) to predict future stock
prices for three major stocks: Amazon (AMZN), Nvidia (NVDA), and Apple (AAPL). The
primary objective was to forecast the prices of four key features—Open, High, Low, and
Close—using historical data. The HMM was chosen due to its ability to model sequences
of observations where the system being modeled is assumed to follow a Markov process
with unobserved (hidden) states. This characteristic of HMMs makes them particularly
well-suited for capturing the latent market conditions that influence stock prices.

4.2 Sliding Window Approach

To enhance the accuracy and robustness of our predictions, we adopted a sliding window
approach. Specifically, we used a window of size D = 96 observations for training the model,
and predictions were made for the subsequent d = 96 time steps. The sliding window method
allowed us to iteratively update the model with new data, ensuring that the model remained
relevant and adaptive to the latest market conditions.

This approach is particularly beneficial in financial time series forecasting, where the
underlying data can exhibit non-stationarity, meaning that statistical properties such as
mean and variance can change over time. By using a sliding window, we effectively captured
the most recent market trends and reduced the risk of overfitting to outdated data.

4.3 Hidden Markov Model (HMM) Training

For each stock and feature, the HMM was trained using the following procedure:

• Training Data: At each time step, the model was trained using the past D = 96
observations from the historical data. This choice of window size was based on a
balance between capturing enough historical information and avoiding overfitting to
older, potentially less relevant data.

• Model Initialization: For the first iteration, a Gaussian HMM with an optimized
number of hidden states was initialized and trained. The optimal number of hid-
den states was determined through cross-validation, balancing model complexity with
predictive performance. For subsequent iterations, the model was re-initialized with
parameters (start probabilities, transition matrix, and means) carried over from the
previous iteration to ensure continuity and stability in the predictions. This transfer
of parameters helped the model maintain consistency and leverage previously learned
patterns.

The HMM can be described mathematically as follows:

P (Xt|St) = N (Xt;µSt
,ΣSt

)

Where:

• Xt represents the observed data at time t (e.g., stock prices).

• St represents the hidden state at time t.

• µSt
and ΣSt

are the mean and covariance matrix of the Gaussian distribution associ-
ated with the hidden state St.

The parameters of the HMM are:

• Start probabilities π: This is the probability distribution over the initial state,
representing the likelihood of the system starting in each hidden state.

• Transition matrix A: This matrix represents the probabilities of transitioning from
one hidden state to another. It captures the dynamics of the market conditions and
how they evolve over time.

• Emission probabilities: These are the likelihoods of the observed data given a
particular hidden state, modeled as a Gaussian distribution. The emission probabilities
link the hidden states to the observed stock prices.
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4.4 Likelihood-Based Prediction

After training the HMM on the current window of data, we computed the likelihood of the
training data under the fitted model. The likelihood function is given by:

L(θ|X1:T ) = P (X1:T |θ)

Where:

• θ represents the parameters of the HMM (start probabilities, transition matrix, means).

• X1:T represents the sequence of observed data up to time T .

The likelihood of the observed sequence given the model parameters provided a mea-
sure of how well the model explained the data. To predict future prices, we compared
this likelihood to the likelihoods of historical windows to identify a past period where mar-
ket conditions were most similar to the current period. The rationale behind this approach
is that similar market conditions in the past may yield similar price movements in the future.

The predicted price at the next time step was calculated using the following formula:

Predicted Price = PT−1 + (Pmint+1 − Pmint)× sign (Loriginal − Lmin)

Where:

• PT−1 is the last observed price.

• Pmint+1 and Pmint
are the prices at the most similar historical time point.

• Loriginal and Lmin are the original and minimum likelihoods, respectively.

This method leverages historical similarities to predict future price movements, with the
assumption that similar conditions will produce similar outcomes.

5 Result

5.1 Evaluation: Mean Absolute Percentage Error (MAPE)

To assess the accuracy of the predictions, we calculated the Mean Absolute Percentage Error
(MAPE), a common metric for evaluating forecasting models. MAPE is defined as:

MAPE =
100%

n

n∑
i=1

∣∣∣∣Ai − Pi

Ai

∣∣∣∣
Where:

• Ai is the actual price at time i.

• Pi is the predicted price at time i.

• n is the number of predictions.

MAPE provides an intuitive measure of prediction accuracy, expressed as a percentage.
It indicates the average percentage error between the predicted and actual values, with lower
MAPE values signifying better predictive performance. In this study, the performance of the
HMM for predicting the Open, High, Low, and Close prices of AMZN, NVDA, and AAPL
is summarized in Table 1. The results demonstrate the model’s ability to forecast stock
prices with reasonable accuracy, though there is some variability across different stocks and
features.

AMZN NVDA AAPL

Open 8.65% 8.67% 8.24%
High 7.26% 8.45% 5.79%
Low 8.04% 8.59% 7.43%
Close 8.83% 9.04% 8.22%

Table 1: MAPE values for Amazon, Nvidia, and Apple.
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5.2 Analysis

The results of the predictions for each stock and feature were plotted against the observed
prices over the prediction window. Figures 5, 6, and 7 display the results for AMZN, NVDA,
and AAPL, respectively. The plots reveal that the HMM model captures the general trends
in stock prices reasonably well, though there are instances where the model’s predictions
deviate from actual prices. This could be attributed to sudden market shifts or events that
were not captured in the historical data used for training.

Overall, the HMM model demonstrated a robust capability to predict stock prices, espe-
cially in markets with more stable and predictable conditions. However, further refinements,
such as incorporating additional features or employing more sophisticated models, could po-
tentially improve the prediction accuracy, particularly in more volatile market environments.

Figure 5: Predicted vs Observed Open Prices for Amazon Inc.

Figure 6: Predicted vs Observed Open Prices for NVIDIA Corporation
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Figure 7: Predicted vs Observed Open Prices for Apple Inc.

6 Limitations

While Hidden Markov Models (HMMs) offer a robust framework for modeling time series
data and have shown promise in stock price prediction, there are several limitations to this
approach that must be acknowledged.

6.1 Assumption of Markov Property

One of the core assumptions of HMMs is the Markov property, which posits that the future
state depends only on the current state and not on the sequence of events that preceded
it. This ”memoryless” assumption can be overly simplistic for financial markets, where
historical data and long-term trends often play a significant role in determining future
prices [Shumway and Stoffer(2011)]. This limitation may result in the model missing out
on important patterns that extend beyond the immediate past.

6.2 Stationarity Assumption

HMMs implicitly assume that the statistical properties of the underlying process (such
as transition probabilities between states) remain constant over time. However, finan-
cial markets are often characterized by non-stationarity, with changing dynamics due to
evolving economic conditions, technological advancements, and policy changes. This as-
sumption of stationarity may limit the model’s ability to adapt to shifts in market regimes
[Chang and Hu(2022)].

6.3 Limited Ability to Capture Extreme Events

Financial markets occasionally experience extreme events or ”black swans,” such as market
crashes or booms, which are rare but have a profound impact on prices. HMMs, particu-
larly those with Gaussian emissions, may struggle to capture these outliers or tail events
accurately, as they are not designed to model heavy-tailed distributions. This can lead to
significant prediction errors during periods of high volatility [Taleb(2008)].

7 Conclusions

In this study, we employed Hidden Markov Models to predict the stock prices of major
companies such as Amazon (AMZN), Nvidia (NVDA), and Apple (AAPL). The HMM
framework was chosen for its ability to model time series data with hidden states, captur-
ing underlying market conditions that influence stock prices. Through a rigorous process
of model training, sliding window techniques, and likelihood-based predictions, we demon-
strated the potential of HMMs in forecasting stock prices with reasonable accuracy.

However, it is essential to recognize the limitations inherent in the HMM approach. The
assumptions of the Markov property and stationarity and the challenges in capturing ex-
treme market events all pose constraints on the model’s predictive capabilities. Additionally,
the reliance on historical data and the computational complexity of the model can limit its
effectiveness in certain market environments.
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Given these limitations, exploring alternative models or hybrid approaches may be bene-
ficial. For instance, combining HMMs with other advanced techniques, such as Long Short-
Term Memory (LSTM) networks, can address the issue of capturing long-term dependencies
in time series data. LSTMs, a type of recurrent neural network, are particularly well-suited
for modeling sequences where long-term contextual information is crucial. Additionally,
incorporating regime-switching models, which can better handle the non-stationarity of
financial time series by allowing for different market regimes, could improve prediction ac-
curacy and robustness.

Another promising direction is the development of hybrid models that leverage the
strengths of multiple approaches. For example, a hybrid model could use HMMs to iden-
tify underlying market regimes and LSTMs to predict price movements within each regime.
Such models could potentially offer more accurate and resilient predictions by addressing
the weaknesses of individual techniques.

In summary, while HMMs are valuable tools for modeling and predicting stock prices,
their limitations must be carefully considered when interpreting results. Future research
should focus on addressing these limitations through model enhancements or by integrating
HMMs with other predictive techniques. By doing so, it may be possible to create more
sophisticated models that provide better insights into the complex dynamics of financial
markets.

7.1 Future Research Directions

Future research could explore several avenues to enhance the performance of HMMs in stock
price prediction. These include:

• Incorporating more complex emission distributions: Instead of using Gaussian
emissions, future models could explore non-Gaussian or mixture models that better
capture the heavy tails and skewness often observed in financial data.

• Hybrid modeling approaches: As mentioned, combining HMMs with machine
learning models like LSTMs or regime-switching models could provide a more holistic
approach to time series forecasting.

• Dynamic state adaptation: Developing methods for dynamically adjusting the
number of hidden states based on market conditions could improve model flexibility
and accuracy.

In conclusion, while HMMs provide a solid foundation for stock price prediction, the
incorporation of alternative models and enhancements is critical for advancing the field and
improving the reliability of financial forecasting models.
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